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Abstract
We investigate a special class of quadratic Hamiltonians on so(4) and so(3, 1)

and describe Hamiltonians that have additional polynomial integrals. One of
the main results is a new integrable case with an integral of sixth degree.

PACS numbers: 02.30.Hq, 02.30.Ik, 45.30.+s
Mathematics Subject Classification: 34M55, 37J35, 37N15

1. Introduction

In this paper we consider the following family of Poisson brackets:

{Mi,Mj } = εijkMk, {Mi, γj } = εijkγk, {γi, γj } = κεijkMk. (1.1)

Here Mi and γi are components of three-dimensional vectors M and Γ, εijk is the totally
skew-symmetric tensor, κ is a parameter. It is well known that any linear Poisson bracket is
defined by an appropriate Lie algebra. The cases κ = 0, κ > 0 and κ < 0 correspond to the
Lie algebras e(3), so(4) and so(3, 1).

Bracket (1.1) has the two Casimir functions:

J1 = (M,Γ), J2 = κ|M|2 + |Γ|2,
where (·, ·) stands for the standard dot product in R3. Hence, for the Liouville integrability
of the equations of motion only one additional integral functionally independent of the
Hamiltonian and the Casimir functions is necessary.

There are two examples of classical problems with the e(3)-bracket κ = 0 and a
Hamiltonian of the above form:

(i) the Euler–Poinsot model describing the motion of a rigid body around a fixed point under
gravity (with H = (M, AM) + (Q,Γ) ), and
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(ii) the Kirchhoff model describing the motion of a rigid body in ideal fluid with

H = (M, AM) + (M, BΓ) + (Γ, CΓ). (1.2)

Homogeneous Hamiltonians (1.2) have numerous applications for κ �= 0 each with extra
conditions on matrices A,B,C. If κ is positive then they include

(A) the Poincaré model describing free motion (without gravity) of a three-dimensional body
with an ellipsoidal cavity filled with ideal fluid around a fixed point,

(B) a model describing the motion of a four-dimensional rigid body around a fixed point (in
flat space as the Poincaré model),

(C) a Hamiltonian describing two-spin interactions [1].

For positive and negative κ the Hamiltonians (1.2) include as well cases of motion of a three-
dimensional rigid body in a space of constant curvature κ either (D) freely (see [2–4]), or (E)
in ideal fluid (generalized Kirchhoff model). In [3] a model with several ellipsoidal cavities
that is more general than the Poincaré model (A) is given, where the restrictions on matrices
A,B,C in (1.2) are less strict.

By adding linear terms the above models can be generalized. For example, for model (A)
linear terms could be used to describe the motion of bodies with multiply connected cavities,
for model (B) to add gyrostatic momentum to the rigid body to become a gyrostat3 and for
model (C) linear terms are related to a constant magnetic field.

It should also be noted that any integrable quadratic homogeneous Hamiltonian defines
a left-invariant metric on SO(4) or SO(3, 1) with integrable geodesic flows and that such a
Hamiltonian provides an interesting model for quantization (see, for example [5]).

Many papers have been devoted to search and investigation of integrable Hamiltonians
(1.2). The case where the Hamiltonian (1.2) has a linear additional integral of motion has
been investigated by Poincaré [2]. There are two classical integrable cases, one found by
Frahm-Schottky and one by Steklov, where the additional integral of motion is of second
degree. It was proved in [6] that any Hamiltonian (1.2) possessing an additional second
degree integral is equivalent to one of these two cases. In 1986 Adler–van Moerbeke [7] and
Reyman–Semenov-tian Shansky [8] independently found a Hamiltonian of the form (1.2) with
fourth degree additional integral.

For the Frahm-Schottky, Steklov and Adler–van Moerbeke–Reyman–Semenov-Tian-
Shansky cases all matrices A,B and C are diagonal. This special subclass of ‘diagonal’
Hamiltonians (1.2) was investigated by many authors but no new integrable cases were found.
Probably only these three integrable cases exist among ‘diagonal’ Hamiltonians.

In the paper [9] the first integrable ‘non-diagonal’ Hamiltonian (1.2) with κ = 0 (i.e.
a Hamiltonian of the Kirchhoff type describing the motion of a rigid body in ideal fluid)
was found. This Hamiltonian has a fourth degree additional integral. Generalizations of
this Hamiltonian that include the Kowalewski Hamiltonian have been given in [10, 11] and a
different generalization to the case κ �= 0 was reported in [12].

In paper [13] the Hamiltonian has been rewritten in the form

H = (M, AM) + (b, M × �), (1.3)

where A is a constant symmetric matrix, b �= 0 is a constant vector and × stands for the skew
product. It turns out that this class is very rich in integrable cases. In paper [5] all Hamiltonians
(1.3) with a quartic additional integral were described. Moreover, it was mentioned in

3 A mechanical system is called gyrostat if a rigid body is connected to other bodies in such a way that their relative
motion does not change the distribution of mass of the system.
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[5, 14, 15] that the general Sklyanin brackets [16] for the XXX-magnetic model lead to
some integrable Hamiltonians of the same kind.

The goal of our paper is a systematic investigation of integrable real Hamiltonians (1.3)
and their inhomogeneous generalizations

H = (M, AM) + (b, M × Γ) + (k, M) + (n,Γ), (1.4)

where k and n are constant vectors. Note that the transformations

M → T M, Γ → T Γ (1.5)

for any constant orthogonal matrix T preserve brackets (1.1) and the form of Hamiltonian
(1.4). Using transformations (1.5), one can reduce any (real) Hamiltonian (1.3) to

H = a1M
2
1 + a2M

2
2 + a3M

2
3 + a4M1M3 + a5M2M3 + M1γ2 − M2γ1. (1.6)

In this canonical form the vector b is normalized to (0, 0, 1). The alternative idea of bringing
matrix A to the diagonal form lead to overwhelming computational complexity.

Using different integrability tests, we find in sections 2 and 3 a list of integrable
Hamiltonians (1.4). For each Hamiltonian found in these sections we have verified that
the corresponding additional integral is functionally independent of the Hamiltonian and the
Casimir functions J1 and J2.

All computations there have been made without any serious computer algebra packets
and can be easily verified. In section 4 some statements about the completeness of this list are
reported. To obtain the results of section 4, very cumbersome computations have been done
by the specialized computer algebra package CRACK. It is designed to solve overdetermined
polynomial differential and algebraic systems with an emphasis on extremely large problems.
In [18] an overview of the package and examples for its use in the classification of integrable
systems are given.

It is marvelous that all known Hamiltonians (1.3) possessing additional polynomial
integrals have also some linear partial integrals. These linear partial integrals turn out to
be factors of the polynomial integrals for all homogeneous Hamiltonians considered in this
paper. For this reason we start our study with a simple integrability test based on the existence
of linear partial integrals (see subsection 2.1). An interesting subclass of one-parametric
families of Hamiltonians (1.3) arises there.

In the next subsection 2.2 we apply the Kowalewski–Lyapunov test, which is well known
in the Painlevé analysis, to find all possibly integrable families from this subclass. Because
of a continuous parameter in the Hamiltonian this test becomes extremely efficient. The main
result of this consideration is a new integrable Hamiltonian on so(3, 1) with an additional
sixth degree integral.

In section 3 we are dealing with inhomogeneous Hamiltonians (1.4). Fixing an integrable
homogeneous Hamiltonian as a quadratic part of (1.4), one can easily find all possible linear
parts that preserve the integrability. We present a list of such linear parts for Hamiltonians
found in section 2.

As we claim in section 4, there are no Hamiltonians of the form (1.3) having additional
integrals of degrees from 1 to 8 other than examples described in section 2. We have also
verified that we found in section 3 all Hamiltonians (1.4) having additional integrals of degrees
from 1 to 6.

In this paper we present integrable Hamiltonians and the corresponding additional integrals
in a general vector form, which is invariant with respect to the orthogonal transformations.
This notation allows us to reduce the length of expressions for the Hamiltonians and the
integrals of motion and bring them to a more elegant form. For computations with vectorial
expressions an extra code was written.
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2. Homogeneous integrable cases

2.1. Linear partial integrals

In this section we describe all Hamiltonians of the form (1.3) having linear partial integrals

P = (u, M) + (v,Γ), (2.7)

where u and v are constant vectors. By definition of linear partial integral, the following
relation

{H,P } = [(p, M) + (q,Γ)] · P (2.8)

has to be hold for some constant vectors p and q. This implies that the corresponding equations
of motion preserve the constraint P = 0.

Relation (2.8) is equivalent to a system of bi-linear algebraic equations for coefficients of
the Hamiltonian and components of vectors u, v, p and q. Below we present the result of our
investigation of this system.

One can check that there are two different possibilities, either case 1: v = q = 0, or case 2:
vector q is equal to vector b from formula (1.3).

Case 1. Calculations show that any Hamiltonian having a linear partial integral with v = q = 0
belongs to a class of ‘vectorial’ Hamiltonians of the form

H = c1(a, b)|M|2 + c2(a, M)(b, M) + (b, M × Γ), (2.9)

where b and a are constant vectors, ci are constant scalars. In this case u = b and p = c2a×b.

In other words, for Hamiltonian (2.9) we have

{H, (b, M)} = c2(a × b, M) · (b, M). (2.10)

In the next subsection we will present four different integrable Hamiltonians of the form (2.9)
that possess additional integrals of degrees 1, 3, 4 and 6.

Case 2. In the case q = b the following conditions

(b, v) = (b, u) = 0, p = ξb,

where ξ is a scalar, have to be fulfilled.

Case 2a. If the vectors v and u are not parallel, then without loss of generality we may assume
that b = u × v. It turns out that in this case ξ = 0 and u and v are arbitrary vectors such that
(u, v) = 0. The Hamiltonian is given by

H = 1

2
|u|2|M|2 +

1

2
(u, M)2 − κ

2
(v, M)2 + (u × v, M × Γ). (2.11)

The partial integral P = (u, M) + (v,Γ) satisfies the relation

{H,P } = (u × v,Γ) · P.

This Hamiltonian has the following additional integral of fourth degree:

I = (P |M|2 − 2(v, M)(M,Γ)) · P. (2.12)

This integrable case was found in a different non-vector form in [9, 12]. A Lax operator is
presented in [19].

Case 2b. The other possibility is that the vectors v and u are parallel:

(b, v) = 0, p = ξb, u = ηv.
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It turns out that in this case ξ = η and κ = η2. We see that a real linear integral exists only for
the so(4)-version κ > 0 of bracket (1.1). The Hamiltonian is given by the formula

H = −2η(v, M)(z, M) + (b, M × Γ), b = v × z (2.13)

where v and z are arbitrary constant vectors. The partial integral P = (v, ηM + Γ) satisfies

{H,P } = (b, ηM + Γ) · P.

This Hamiltonian has the following additional integral of fourth degree (cf [16, 14]):

I = (z, (ηM − Γ)|M|2 + 2M(M,Γ)) · P. (2.14)

The eigenvalues αi of the matrix A from (1.2) satisfy the following relations:

α3 = 0, α1α2 = −η2|b|2.
Diagonalizing the matrix A, we get the possible canonical form of the Hamiltonian (2.13)

H = η

(
cM2

1 − 1

c
M2

2

)
+ M1γ2 − M2γ1.

Although it is real only for the so(4)-bracket, after the renormalization c = c̄
η

of the arbitrary
parameter c we get the Hamiltonian (see [5])

H = c̄M2
1 − κ

c̄
M2

2 + M1γ2 − M2γ1,

which is real for any bracket (1.1). In particular, if κ = 0, we have a new integrable case on
e(3) with a fourth degree integral.

2.2. Kowalewski–Lyapunov test and a new integrable case

In this section we show that the class of Hamiltonians (2.9) contains a number of integrable
cases. The first example of this kind was found in [5]:

Example 1. Consider the so(3, 1)-version κ < 0 of bracket (1.1). The Hamiltonian

H = (a, b)|M|2 − (a, M)(b, M) + (b, M × Γ), (2.15)

where the vector b is arbitrary and the length of the vector a = (a1, a2, a3) is related to the
Poisson bracket parameter κ by

a2
1 + a2

2 + a2
3 = −κ, (2.16)

possesses the additional quartic integral

I = (b, M)2[2(a, M × Γ) − (a, M)2 − κ|M|2 + |Γ|2].

Recently in paper [15] the following integrable case has been found:

Example 2. The Hamiltonian

H = (a, b)|M|2 − 2(a, M)(b, M) + (b, M × Γ), (2.17)

has under condition (2.16) the additional cubic integral

I = (b, M)[2(a, M × Γ) − κ|M|2 + |Γ|2].

In the two examples mentioned above, constraint (2.16) is necessary for integrability. We
are going to find all integrable Hamiltonians similar to (2.15) and (2.17). To do that we apply
the Kowalewski–Lyapunov test to the class of Hamiltonians (2.9) assuming that the additional
condition (2.16) is valid.
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Suppose we have a dynamical system

dX
dt

= F(X), X = (x1, . . . , xN), F = (f1, . . . fN), (2.18)

where fi are homogeneous quadratic polynomials of X. Solutions of the form

X0 = K
t

(2.19)

for system (2.18) with K being a constant vector are called Kowalewski solutions. Substituting
(2.19) into (2.18), one obtains a system of algebraic equations for possible vectors K.

The linearization X = X0 + εΨ of system (2.18) on a Kowalewski solution X0 obeys

dΨ
dt

= 1

t
S(Ψ), (2.20)

where S is a constant N × N -matrix depending on the Kowalewski solution.
Solutions of (2.20) have the form Ψ = st−k , where k is an eigenvalue and s is an

eigenvector of the matrix S. The number 1 − k is called Kowalewski exponent.
According to the Kowalewski–Lyapunov test, system (2.18) is ‘integrable’ if for any

Kowalewski solution all corresponding Kowalewski exponents belong to an a priori fixed
number set A. The structure of A is closely related to analytic properties of the general solution
for (2.18). The usual choice A = Z is associated with the requirement that the general solution
should be single valued. The latter is a standard assumption for the Painlevé analysis. The
most general version A = Q is associated with general solutions having algebraic branch
points. But the main property for us is that A cannot be too wide. In particular, it cannot
contain any open subset of C or R. Therefore for any one-parameter family of integrable
(in the Kowalewski–Lyapunov sense) dynamical systems (2.18) the Kowalewski exponents
must not depend on the parameter. This gives us strong necessary integrability conditions for
one-parametric families of homogeneous quadratic dynamical systems.

Given c1 and c2, the Hamiltonian (2.9) with (2.16) depends on one essential continuous
parameter. Indeed, the length of a is fixed by (2.16), the length of b can be normalized by the
scaling of the Hamiltonian. Two vectors of a fixed length have only one invariant (the angle
between them) with respect to orthogonal transformation (1.5).

We want to find all pairs c1 and c2 in (2.9) such that the Hamiltonian is integrable for any
value of the angle. Using transformation (1.5), we may reduce b and a to

b = (0, 0, 1), a = (a1, 0, a3). (2.21)

Taking into account the constraint (2.16), we see that now a3 remains to be the only free
parameter in (2.9). For a generic Hamiltonian of this kind the Kowalewski exponents for
the equations of motion depend continuously on a3. For an integrable Hamiltonian these
exponents must not depend on the parameter at all.

Theorem 1. Suppose all Kowalewski exponents for Hamiltonian (2.9) with (2.16), (2.21)
do not depend on a3; then the pair of constants c1, c2 belongs (up to the transformation
c1 → −c1, c2 → −c2, which corresponds to a → −a) to the following list:

(a) c1—arbitrary, c2 = 0,
(b) c1 = 1, c2 = −2,
(c) c1 = 1, c2 = −1,
(d) c1 = 1, c2 = − 1

2 ,
(e) c1 = 1, c2 = 1.
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To prove this statement, we have to investigate the Kowalewski exponents on all solutions of
the form

Mi = mi

t
, γi = gi

t
(2.22)

for the equations of motion defined by Hamiltonian (2.9), (2.16). To get the list of theorem 1,
it turns out to be enough to investigate the Kowalewski exponents on special solutions (2.22),
which satisfy g3 = 1. There exist two classes of such solutions. For the first class we have
c2(a1m2 − a2m1) = 1. The second class is defined by m3 = 0. For solutions of the first class,
besides the cases of theorem 1, the only extra surviving possibility is c1 = 1/2, c2 = −1.
But this case does not pass the Kowalewski–Lyapunov test on the solutions of the second
class. For each pair (c1, c2) of the remaining list (a)–(e) of theorem 1 we verify that for all
Kowalewski solutions the Kowalewski exponents do not depend on a3. All computations are
straightforward. A technical problem is that the explicit form of solutions of the first class
involves radicals. To avoid this difficulty, we used calculations based on the Groebner basis
technique.

Comments. The Hamiltonian (a) belongs to the family

H = c1|b|2|M|2 + c2(b, M)2 + (b, M × Γ), (2.23)

which possesses (without restriction (2.16)) the linear integral of motion I = (b, M).

The Hamiltonians (b) and (c) are described in examples 2 and 1, correspondingly. The
possibility (d) leads to the following new integrable case with an additional integral of sixth
degree:

Example 3. The Hamiltonian,

H = (a, b)|M|2 − 1
2 (a, M)(b, M) + (b, M × Γ), (2.24)

under condition (2.16) has the additional sixth degree integral

I = (b, M)2[(b × a, M × a)2M2 + 2(b × a, M × a)(b × a, M × (M × Γ))

− Γ2(M, b × a)2 − (b × a, M × Γ)2 − M2Γ2(b, a)2 − κM2Γ2b2].

Possibly this integrable case is related to the simple Lie algebra G2.

In [17] a generalization of the general scheme by Sklyanin [16] has been proposed. In
[15] the authors found a separation of variables for Hamiltonian (2.17) from example 2 in the
framework of this approach. Probably a separation of variables for the Hamiltonians from
examples 1 and 3 could be found after some development of these ideas.

All Kowalewski exponents for cases (a)–(c) are integers. In case (d) there are two solutions
of class 2. For these solutions we have

det(S − kId) = (k − 1)3(k + 2)
(
k − 1

2

)(
k + 3

2

)
and

det(S − kId) = (k − 1)3(k + 2)
(
k + 1

2

)2
.

In other words, some of the Kowalewski exponents are half-integers.
Case (e) is a mysterious one. We have verified that the Hamiltonian has no additional

polynomial integrals of degrees less than or equal to 8. On the other hand, on all Kowalewski
solutions all Kowalewski exponents are integers. It would be interesting to verify whether the
equations of motion in case (e) satisfy the standard Painlevé test4.

4 Note added in proof: case (e) has been investigated by Sakovich who found that this case does not pass the Painlevé
test (see [21]).
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3. Inhomogeneous integrable Hamiltonians

3.1. Admissible linear terms for integrable homogeneous Hamiltonians

In this subsection we find for integrable homogeneous Hamiltonians H of the form (2.23),
(2.17), (2.15), (2.13), (2.11) or (2.24) possible linear terms

T = (k, M) + (n,Γ), (3.25)

where k and n are constant vectors, such that the Hamiltonian

H̃ = H + T

has an additional integral of the same degree as H.

Proposition 1. The following linear terms are admissible (in the above sense):

(1) for Hamiltonian (2.23) T = p1(b, M) + p2(b, Γ),
(2) for Hamiltonian (2.17) with (2.16) T = (k, M) + p1(b, Γ),
(3) for Hamiltonian (2.15) with (2.16) T = (p1a + p2a × b, M) + p3(b, Γ),
(4) for Hamiltonian (2.13) T = (k, M) + p1(v × z, Γ),
(5) for Hamiltonian (2.11) with (u, v) = 0 T = p1(u, M) + p2(u × v, Γ),
(6) for Hamiltonian (2.24) with (2.16) T = p1(a × b, M),

where k is an arbitrary vector and p1, p2, p3 are arbitrary constants.

We present the explicit form of the additional integrals for the non-homogeneous
Hamiltonians H̃ of proposition 1 in the appendix.

3.2. A deformation of the Poincare model

The formula (2.23) describes Hamiltonians (1.3) that have linear additional integrals. We shall
call (2.23) the Poincaré model.

For the special pair c1 = 1, c2 = −1/2 the Poincaré model is superintegrable. It means
that besides the linear integral the Hamiltonian has a polynomial integral of degree higher
than 1.

Proposition 2. The Hamiltonian

Hhom = |b|2|M|2 − 1
2 (b, M)2 + (b, M × Γ) (3.26)

under condition |b|2 = −κ has the following additional integral of degree 4, functionally
independent of H, the Casimirs and the linear integral (b, M):

I = (k, M)[(k, M)|b|2 − 2(k, b)(b, M)] · [|Γ|2 + |b|2|M|2]

+ |M|2(b, M)2[(k, b)2 + |k|2|b|2] − (k × b, M × Γ)2

+ 2(k × b, b × M) · [|M|2(k, b × Γ) − (M,Γ)(k, b × M)],

where k is an arbitrary constant vector.

It follows from the Jacobi identity that I1 = {(b, M), I } is a first integral as well. It turns
out that I1 �= 0, which means that the Poisson subalgebra of polynomial integrals for Hhom is
non-commutative. For any X let us denote the Poisson bracket {(b, M),X} by X′. One can
check that the integral I satisfies the relation I ′′′ + 4|b|2I ′ = 0.

The derivation X → X′ can be regarded as a linear operator on the finite-dimensional
vector space Sn of all homogeneous polynomials of degree n depending on components of
M and Γ. The operator spectrum is µk = ik|b|, 1 � k � n. Probably this operator plays an
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important role in the theory of the vector Hamiltonians (2.9). Many terms in the integrable
Hamiltonians from this class admit simple descriptions in terms of this operator. For example,
the linear polynomial (k, b × M ), where k is an arbitrary constant vector, is the general
linear solution of the equation X′′ + |b|2X = 0. This fact and formula (2.10) imply that the
arbitrary Hamiltonian (2.9) satisfies the equation X′′′ + |b|2X′ = 0. The additional integral
from example 1 satisfies the same equation and so on.

The Hamiltonian (3.26) admits the following inhomogeneous integrable extension:

H̃ = Hhom + (k × b, M) + p1(b,Γ), (3.27)

where k is an arbitrary constant vector, p1 is an arbitrary constant. Hamiltonian (3.27) under
condition (2.16) has an additional integral of degree 4, given in the appendix.

4. Classification results

It is very likely that all integrable Hamiltonians of the form (1.3) and (1.4) are exhausted by
the examples presented in sections 2 and 3.

Theorem 2. Suppose a Hamiltonian of the form (1.3) with real coefficients has an additional
polynomial integral of degree from 1 to 8; then the Hamiltonian belongs to the six families
(2.23), (2.17), (2.15), (2.13), (2.11) or (2.24).

Scheme of the proof. For computations we use the canonical form (1.6). Without loss of
generality we may assume that the additional polynomial integral is homogeneous. Given the
degree m of the additional integral I, we form the general homogeneous mth degree polynomial
of six variables Mi, γi with undetermined coefficients. The condition {I,H } = 0 gives rise
to a bi-linear system of algebraic equations for both coefficients of H and I. Of course, this
system can be solved ‘by hand’ only for small m. If m = 6 the algebraic system contains
791 bi-linear equations for 458 unknown coefficients. This system cannot be currently solved
by standard computer algebra systems. Also all attempts by the authors to use the two best
known packages specialized in the solution of polynomial algebraic systems failed.

The computation was performed using the computer algebra package CRACK. For m < 6
the calculations were performed automatically and for m � 6 with manual interaction.

Following the same line we have obtained. �

Theorem 3. Suppose a Hamiltonian of the form (1.4) with real coefficients has an additional
polynomial integral of degree from 1 to 6; then the Hamiltonian belongs to the seven families
described in propositions 1 and 2.

5. Conclusion: unsolved problems

This paper as well as [5] belongs mostly to so-called ‘experimental’ mathematical physics.
The result of the experiment is a new interesting class (1.4) of quadratic Hamiltonians. This
class contains several new integrable cases. Theorems 1–3 give reasons to believe that we
found all real integrable Hamiltonians of the form (1.4). However, this should be proved. To
do that, one can apply the Painlevé approach or methods developed in [20].

The separation of variables for several models from our paper is also an open problem.
Besides Hamiltonians listed in theorem 3, there exist integrable Hamiltonians of the

form (1.4) with complex coefficients. For example, the Hamiltonian (2.9), (2.16) with
c1 = 1, c2 = − 2

3 has an additional integral of sixth degree under condition |b × a| = 0.

To find the complex Hamiltonians, one should consider two different normalizations of the
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vector b. The first is b = (0, 0, b3), which corresponds to the possibility |b| �= 0 and gives rise
to the normal form (1.6). The second normalization b = (0, b2, ib2) corresponds to |b| = 0.

In the case of fourth degree additional integrals all complex integrable Hamiltonians have been
found in [5].

Probably all Hamiltonians from our paper have their quantum counterparts (for the case
of fourth degree integral see [5]). It would be interesting to find the corresponding quantum
Hamiltonians and integrals as well as the quantum separation of variables.
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Appendix

Here we present an explicit form of additional integrals for inhomogeneous Hamiltonians
from propositions 1 and 2. Each integral I of degree m is a sum I = ∑m

i=1 Ii, where Ii is a
polynomial of degree i homogeneous in M,Γ.

Case 1 of proposition 1. I = I1 = (b, M).

Case 2 of proposition 1. I3 is presented in example 2,

I2 = 2p1(b, M)(a,Γ) − (k, a)|M|2 − (k, M × Γ),

I1 = −κp2
1(b, M) − p1(k,Γ).

Case 3 of proposition 1. I4 is presented in example 1,

I3 = 2(b, M){p1[(a, M)2 + κ|M|2 − |Γ|2 − 2(a, M × Γ)]

+ p2[(b × a, M × Γ) + (a, M)(a, b × M)] + p3(b, M)(a,Γ)},
I2 = p2

1[2|Γ|2 − (a, M)2 + 2(a, M × Γ)] − 2p2p3(b, M)(a, b × Γ)

+ p2
2[|b|2(a, M)2 − κ(b, M)2 − 2(a, b)(a, M)(b, M)] − 4p1p3(b, M)(a,Γ)

− p2
3κ(b, M)2 + 2p1p2[(a × b, M × Γ) − (a, M)(a, b × M)]

I1 = 2p1p3[p1(a,Γ) + p2(a, b × Γ) + p3κ(b, M)].

Case 4 of proposition 1. I4 = η|a × b|2I where I is given by (2.14),

I3 = p1η((v, z)2 − |v|2|z|2) · [η|M|2(v, z × Γ) − 2(v,Γ)(z, M × Γ) + |Γ|2(v, z × M)]

+ η2|M|2[(z, M)(v × z, k × v) − (v, M)(v × z, k × z)]

+ 2η[(v, M)(z, k)(v × z,Γ × M) + (v, M)(k, M)(v × z, z × Γ)

− (v, M)(k,Γ)(v × z, z × M)

− 1
2 (k,Γ)|M|2|v × z|2 − (z × M, M × Γ)(v × z, v × k)]

− (v, z × k)(v, z × M)|Γ|2,
I2 = p2

1η|v × z|2[η2(v × M, z × M) + (v,Γ)(z,Γ)] − p1η[((v, M)(z,Γ)

+ (v,Γ)(z, M))(v, z × k) + (v × z, z × k)(v, M × Γ)

+ (v × z, v × k)(z, M × Γ)] − η|M|2(v × k, z × k) + (v, z × k)(k, M × Γ),

I1 = p1(v, z × k) · (p1η
2(v, z × M) + (k,Γ)).
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Case 5 of proposition 1. I4 is is given by (2.12), I1 = 0,

I3 = 2p1(P |M|2 − (v, M)(M,Γ)) + 2p2((M,Γ)(u, v × M) − P(M, � × v)),

I2 = p2
1|M|2 + p2

2(|v|2|Γ|2 + κ(v, M)2 − (v,Γ)2) − 2p1p2(M, � × v),

where P = (u, M) + (v,Γ).

Case 6 of proposition 1. I6 is presented in example 3, I1 = 0,

I5 = 4p1(b, M){[(a, b)|M|2(a × b, a × M)(a, b × M) + |Γ|2(a × b, b × M)(a, b × M)]

+ (a × b, M × Γ)[(b,Γ)(a, b × M) − (b, M)(a, b × Γ)]

+ (b, M)(M,Γ)[(a, b)(a × b, a × M) − κ(a × b, b × M)]

− (a, b)(a × b, b × M)[2(a, M)(M,Γ) − (a,Γ)|M|2]

+ |M|2(a × b, a × M)[|b|2(a,Γ) − 2(a, b)(b,Γ)]},
I4 = p2

1{4[(a × b, b × M)((a,Γ)(b, M) + 2(a, b)(M,Γ)) − (b,Γ)(b, M)(a × b, a × M)

− 2(a, b)|M|2(a × b, b × Γ)] · (a, b × M) + 4(b, M)[(b, M)(a × b, a × M)

− (a, M)(a × b, b × M)] · (a, b × Γ) − 8(a × b, b × M)(a × b, b × Γ)(M,Γ)

+ [4(a, b)2(a, M)(a × b, b × M) − 4(b, M)(2(a, b)2 − |a|2|b|2)(a × b, a × M)

+ 4(a × b, b × Γ)2]|M|2 − 4(a, b)2((a, b)2 − |a|2|b|2)|M|4},
I3 = 8p3

1|a × b|2((a, b)|M|2(a, b × M) + (b × a, b × Γ)|M|2 + (a × b, b × M)(M,Γ)),

I2 = −4p4
1|a × b|2((a, b)2|M|2 − |b|2|Γ|2).

The case of proposition 2. I1 = 0; I4 is related to integral I from proposition 2 by

I4 = |b|2I + (b, M)2[(k × b, b × Γ)(k, b × M) − (k × b, b × M)(k, b × Γ)

+ ((k, b)2 − |k|2|b|2) · (|Γ|2 − 1
4 (b, M)2) + |k|2|b|2(|Γ|2 + κ|M|2)],

I3 = p1[((k, b)2 − |k|2|b|2)(b, M)2(b,Γ)− 2|b|2(k × b, M ×Γ)((k, b × Γ)

+ (k × b, b × M))] + ((k, b)2 − |k|2|b|2)(b, M)[(b, M)(k, b × M) + 2(k × b,Γ× M)],

I2 = p2
1[|b|2(k × b, b × M)2 + (k × b, b × Γ)2 + ((k, b)2 − |k|2|b|2)|b × Γ|2

+ |k|2|b|4(|Γ|2 + κ|M|2)] − 2p1((k, b)2 − |k|2|b|2)(b, M)(k, b × Γ)

+ ((k, b)2 − |k|2|b|2)[(b, M)(k × b, k × M) − (k, M)(k × b, b × M)].

References

[1] Magyari E, Thomas H, Weber R, Kaufman C and Muller G 1987 Integrable and nonintegrable classical spin
clusters. Integrability criteria and analytic structure of invariants Z. Phys. B 65 363–74
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